ALUMINI

ÉTRIER INVISIBLE SANS TROUS

CLASSE DE SERVICE

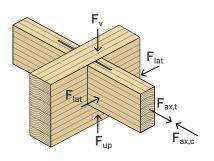
STRUCTURES COMPACTES

La fine largeur de l'étrier permet d'obtenir des assemblages de poutres secondaires avec une largeur réduite (à partir de 55 mm).

VERSION LONGUE

La version longue de 2165 mm peut être coupée tous les 30 mm pour obtenir des étriers de la taille la plus appropriée. Les broches autoforeuses SBD offrent une liberté de fixation maximale.

ASSEMBLAGES INCLINÉS


Résistances certifiées et calculées dans toutes les directions : verticales, horizontales et axiales. Utilisable dans les assemblages inclinés.

MATÉRIAU

alliage d'aluminium EN AW-6060

SOLLICITATIONS

VIDÉO

Scannez le code QR et regardez la vidéo sur notre chaîne YouTube

DOMAINES D'UTILISATION

Assemblage invisible pour poutres en configuration bois-bois ou bois-béton, adapté aux petites structures, gazébos et mobiliers. Utilisation également à l'extérieur dans des milieux non agressifs.

Appliquer sur :

- bois massif softwood et hardwood
- bois lamellé-collé, LVL

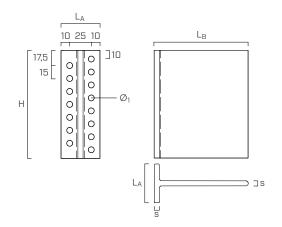
MONTAGE RAPIDE

Le fixation, simple et rapide, est réalisée avec des vis HBS PLATE EVO surla poutre principale et avec des broches autoforeuses ou lisses sur la secondaire.

INVISIBLE

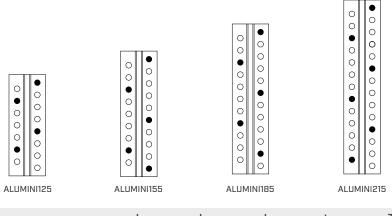
L'assemblage invisible offre un excellent rendu esthétique, dans le respect des exigences de résistance au feu. Utilisation en extérieur possible si correctement couvert par le bois.

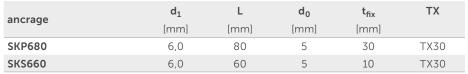
CODES ET DIMENSIONS

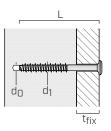

ALUMINI

CODE	type	Н	pcs.
		[mm]	
ALUMINI65	sans trous	65	25
ALUMINI95	sans trous	95	25
ALUMINI125	sans trous	125	25
ALUMINI155	sans trous	155	15
ALUMINI185	sans trous	185	15
ALUMINI215	sans trous	215	15
ALUMINI2165	sans trous	2165	1

■ GÉOMÉTRIE

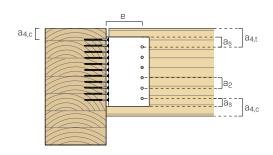

ALUMINI			
épaisseur	s	[mm]	6
largeur aile	L_A	[mm]	45
longueur âme	L_B	[mm]	109,9
petits trous aile	Øı	[mm]	7,0




■ PRODUITS COMPLÉMENTAIRES - FIXATIONS

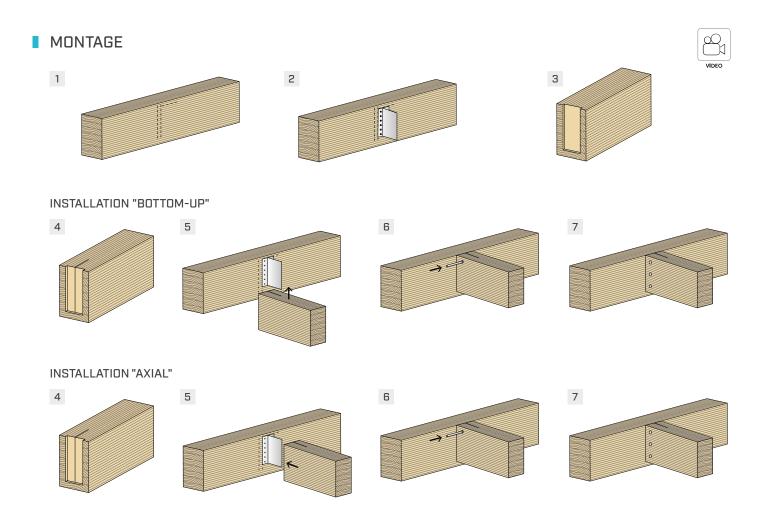
type	description		d	support	page
			[mm]		
HBS PLATE EVO	vis C4 EVO à tête tronconique	<u> </u>	5		573
SBD	broche autoforeuse		7,5		154
SKP	ancrage à visser à tête bombée		6		528
SKS	ancrage à visser à tête fraisée		6		528
BITS	embout long		-	-	-

SCHÉMAS DE FIXATION SUR BOIS

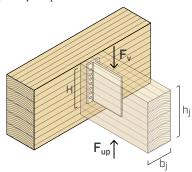


INSTALLATION

DISTANCES MINIMALES

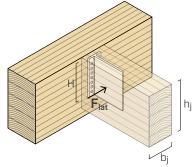


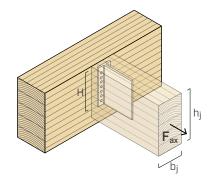
poutre secondaire - bois				broche autoforeuse	broche lisse
				SBD Ø7,5	STA Ø8
broche - broche	a ₂	[mm]	≥ 3·d	≥ 23	≥ 24
broche - extrados poutre	a _{4,t}	[mm]	≥ 4·d	≥ 30	≥ 32
broche - intrados poutre	a _{4,c}	[mm]	≥ 3·d	≥ 23	≥ 24
broche - bord étrier	a _s	[mm]	$\geq 1, 2 \cdot d_0^{(1)}$	≥ 10	≥ 12
broche - poutre principale	е	[mm]		86	86


⁽¹⁾ Diamètre trou.

poutre principale - bois	vis HBS PLATE EVO Ø5	
premier connecteur - extrados poutre	$a_{4,c}$ [mm] $\geq 5 \cdot d$	≥ 25

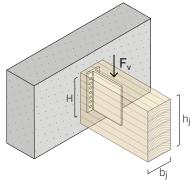
Les espacements et les distances minimales se réfèrent à des éléments en bois avec une masse volumique de $\rho_K \le 420 \text{ kg/m}^3$, des vis insérées sans pré-perçage et une contrainte F_v.


lacksquare VALEURS STATIQUES | BOIS-BOIS | F_v | F_{up}


ALUMINI avec broches autoforeuses SBD et broches STA

		POUTRE SECONDAIRE	POUTRE PRI	NCIPALE
ALUMINI H ⁽¹⁾	b _i x h _i	broches SBD / broches STA ⁽²⁾ SBD Ø7,5 x 55 / STA Ø8 x 60	HBS PLATE EVO Ø5 x 60	R _{v,k} - R _{up,k} GL24h
[mm]	[mm]	[pcs.]	[pcs.]	[kN]
65	60 x 90	2	7	2,9
95	60 x 120	3	11	7,1
125	60 x 150	4	15	12,9
155	60 x 180	5	19	19,9
185	60 x 210	6	23	27,9
215 ⁽³⁾	60 x 240	7	27	35,0

■ VALEURS STATIQUES | BOIS-BOIS | F_{lat} | F_{ax}



	POUTRE SECONDAIRE		POUTRE PRINCIPALE		
ALUMINI H ⁽¹⁾	b _i x h _i	broches SBD / broches STA ⁽²⁾ SBD Ø7,5 x 55 / STA Ø8 x 60	HBS PLATE EVO Ø5 x 60	R _{lat,k timber} GL24h	R _{lat,k alu}
[mm]	[mm]	[pcs.]	[pcs.]	[kN]	[kN]
65	60 x 90	2	7	3,1	1,6
95	60 x 120	3	11	4,1	2,3
125	60 x 150	4	15	5,1	3,0
155	60 x 180	5	19	6,2	3,8
185	60 x 210	6	23	7,2	4,5
215	60 x 240	7	27	8,2	5,2

ALUMINI avec broches autoforeuses SBD

	POUTRE SECONDAIRE		POUTRE PRINCIPALE		
ALUMINI H ⁽¹⁾	b _i x h _i	broches SBD ⁽²⁾ HBS PLATE EVO b _i x h _i SBD Ø7,5 x 55 Ø5 x 60		R _{ax,k timber} GL24h	R _{ax,k alu}
[mm]	[mm]	[pcs.]	[pcs.]	[kN]	[kN]
65	60 x 90	2	7	15,5	15,6
95	60 x 120	3	11	24,3	22,8
125	60 x 150	4	15	33,2	30,0
155	60 x 180	5	19	42,0	37,2
185	60 x 210	6	23	50,8	44,4
215	60 x 240	7	27	59,7	51,6

■ VALEURS STATIQUES CONSEILLÉES | BOIS-BÉTON | F_v

ALUMINI avec broches autoforeuses SBD et broches STA

	POUTRE SECONDAIRE					POUTRE PI BÉTON NO	
ALUMINI		broch	broches SBD ⁽²⁾ broches STA ⁽²⁾			ancrage SKP6	580 / SKS660
H ⁽¹⁾	b _j x h _j	Ø7,5 x 55	$R_{v,k}$	Ø8 x 60	$R_{v,k}$	Ø6 x 80 / Ø6 x 60	$R_{v,d\ concrete}$
[mm]	[mm]	[pcs.]	[kN]	[pcs.]	[kN]	[pcs.]	[kN]
125	60 x 150	3	15,6	3	15,0	4	6,0
155	60 x 180	3	15,6	3	15,0	5	7,3
185	60 x 210	4	20,8	4	20,0	5	9,1
215	60 x 240	5	26,1	5	25,0	6	11,5

NUTES

- (1) L'étrier de hauteur H est disponible prédécoupé (code à la page 74) ou bien il peut être obtenu à partir de la barre ALUMINI2165.
- $^{(2)}$ Broches autoforeuses SBD Ø7,5 : M $_{\rm y,k}$ = 42000 Nmm. Broches lisses STA Ø8 : M $_{\rm y,k}$ = 24100 Nmm.
- (3) Étrier ALUMINI215 avec 7 broches SBD Ø7,5 x 55 $R_{v,k}$ = $R_{up,k}$ = 36,5 kN.

PRINCIPES GÉNÉRAUX

- Les valeurs de résistance du système de fixation sont valables pour les hypothèses de calcul définies dans le tableau. Pour toutes configurations de calcul différentes, le logiciel MyProject (www.rothoblaas.fr) est mis à disposition gratuitement.
- Pour le calcul, la masse volumique des éléments en bois a été estimée à ρ_k = 385 kg/m 3 avec du béton C20/25 peu armé, sans distance au bord.
- Les coefficients $k_{\mbox{mod}}$ et γ_M sont établis en fonction de la réglementation en vigueur utilisée pour le calcul.
- Le dimensionnement et la vérification des éléments en bois et béton doivent être effectués séparément.
- En cas de sollicitations combinées, la vérification suivante doit être respectée :

$$\left(\frac{F_{v,d}}{R_{v,d}}\right)^2 + \left(\frac{F_{lat,d}}{R_{lat,d}}\right)^2 + \left(\frac{F_{ax,d}}{R_{ax,d}}\right)^2 + \left(\frac{F_{up,d}}{R_{up,d}}\right)^2 \leq 1$$

 $F_{v,d}$ et $F_{up,d}$ sont des forces qui agissent dans des directions opposées. C'est pourquoi seulement une des forces $F_{v,d}$ et $F_{up,d}$ peut agir en combinaison avec les forces $F_{ax,d}$ ou $F_{lat,d}$.

- Les valeurs fournies sont calculées avec un fraisage dans le bois de 8 mm d'épaisseur.
- Pour les configurations où seule la résistance côté bois est indiquée, on peut supposer la résistance côté aluminium sur-résistante.

VALEURS STATIQUES | F_v | F_{up}

BOIS-BOIS

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ATE-09/0361.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques sui-

vantes

$$R_{v,d} = \frac{R_{v,k} \cdot k_{mod}}{\gamma_M}$$

$$R_{up,d} = \frac{R_{up,k} \cdot k_{mod}}{V_{M}}$$

 Dans certains cas, la résistance au cisaillement R_{v,k}-R_{up,k} de la connexion peut être particulièrement élevée et être supérieure à la résistance au cisaillement de la poutre secondaire. Il est dès lors préconisé de bien vérifier la résistance au cisaillement de la section réduite de l'élément de bois face à l'étrier.

VALEURS STATIQUES | F_{lat} | F_{ax}

BOIS-BOIS

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ATE-09/0361.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_{lat,d} = min \begin{cases} \frac{R_{lat,k \ alu}}{Y_{M2}} \\ \frac{R_{lat,k \ timber} \cdot k_{mod}}{Y_{M2}} \end{cases}$$

$$R_{ax,d} = min \begin{cases} \frac{R_{ax,k \, alu}}{Y_{M2}} \\ \frac{R_{ax,k \, timber} \cdot k_{mod}}{Y_{M2}} \end{cases}$$

avec y_{M2} coefficient partiel du matériau en bois.

VALEURS STATIQUES $\mid F_{\nu}$

BOIS-BÉTON

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ATE-09/0361. Les valeurs de résistance des ancrages pour béton sont des valeurs nominales obtenues à partir des données de laboratoire et conformément aux Évaluations Techniques Européennes (ATE) respectives.
- Les valeurs de résistance de projet sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_{v,d} = min \begin{cases} \frac{R_{v,k} \cdot k_{mod}}{\gamma_M} \\ R_{v,d \; concrete} \end{cases}$$

 En raison de la disposition des fixations sur béton, il est conseillé de faire particulièrement attention en phase d'installation.