I R10 - R20 - R30

PIED DE POTEAU RÉGLABLE

RÉGLABLE

Réglable en hauteur, y compris sur chantier. Le système de réglage est caché par le manchon pour un rendu optimal.

REHAUSSÉ

Sa distance du sol le protège des éclaboussures ou de l'eau stagnante au profit d'une grande durabilité. Fixation discrète sur l'élément en bois.

SOUCI DU DÉTAIL

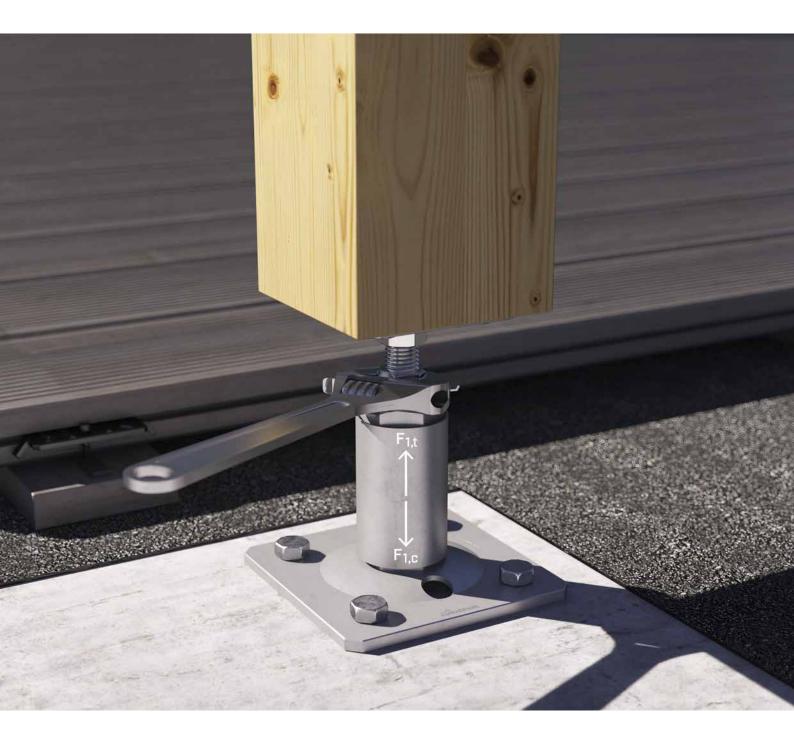
Un perçage supplémentaire sur la platine permet l'insertion des vis HBS PLATE EVO.

CARACTÉRISTIQUE

UTILISATION PRINCIPALE	réglable en hauteur après le montage
POTEAUX	de 80 x 80 mm à 240 x 240 mm
HAUTEUR	réglable de 140 à 250 mm
FIXATIONS	HBS PLATE EVO, SKR, VIN-FIX PRO

VIDÉO

Scannez le code QR et regardez la vidéo sur notre chaîne YouTube


MATÉRIAU

Acier au carbone, galvanisation Dac Coat.

DOMAINES D'UTILISATION

Assemblages en extérieur ; utilisation en classes de service 1, 2 et 3

- bois massif et lamellé-collé
- CLT, LVL

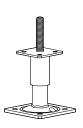
STATIQUE

Hautes résistances à la compression sur les modèles de grandes dimensions. Résistances élevées à la compression et à la traction dans les versions avec tige passante.

FONCTIONNEL

Réglable en hauteur, ce pied de poteau permet de pallier les différences de niveaux rencontrées sur le chantier.

CODES ET DIMENSIONS


R10

CODE	Н	plaque supérieure	trous supérieurs	plaque inférieure	trous inférieurs	vis HBS PLATE EVO*	pcs.
	[mm]	[mm]	[n. x mm]	[mm]	[n. x mm]		
R1080	140-165	80 x 80 x 6	4 x Ø9	120 x 120 x 6	4 x Ø11,5	4 x HBSPEVO690	4
R10100	170-205	100 x 100 x 6	4 x Ø11	160 x 160 x 6	4 x Ø11,5	4 x HBSPEVO8100	4
R10140	200-250	140 x 140 x 8	4 x Ø11	200 x 200 x 8	4 x Ø11,5	4 x HBSPEVO8100	4

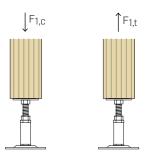
R20

CODE	Н	plaque supérieure	trous supérieurs	plaque inférieure	trous inférieurs	tige Ø x L	vis HBS PLATE EVO*	pcs.
	[mm]	[mm]	[n. x mm]	[mm]	[n. x mm]	[mm]		
R2080	140-165	80 x 80 x 6	4 x Ø9	120 x 120 x 6	4 x Ø11,5	16 x 80	4 x HBSPEVO690	4
R20100	170-205	100 x 100 x 6	4 x Ø11	160 x 160 x 6	4 x Ø11,5	20 x 120	4 x HBSPEVO8100	4
R20140	200-250	140 x 140 x 8	4 x Ø11	200 x 200 x 8	4 x Ø11,5	24 x 150	4 x HBSPEVO8100	4

R30 - DISC FLAT

CODE	Н	plaque supérieure	plaque inférieure	trous inférieurs	tige Ø	DISC FLAT*	vis LBS*	pcs.
	[mm]	[mm]	[mm]	[n. x mm]	[mm]			
R3080	150-170	Ø80 x 15	120 x 120 x 6	4 x Ø11,5	16	1 x DISCF80	10 x LBS760	4
R30120	180-210	Ø120 x 15	160 x 160 x 6	4 x Ø11,5	20	1 x DISCF120	18 x LBS780	4

MATÉRIAU ET DURABILITÉ


TYP R: acier au carbone S235, revêtement spécial Dac Coat. Utilisation en classes de service 1, 2 et 3 (EN 1995-1-1).

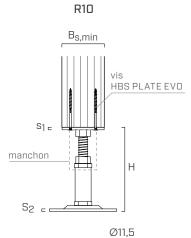
Plaque supérieure R30 : en acier au carbone électrozingué.

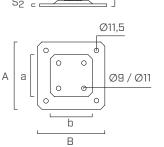
DOMAINES D'UTILISATION

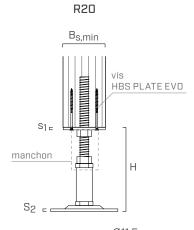
- Poteaux en bois
- Poutres en bois

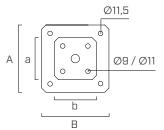
SOLLICITATION

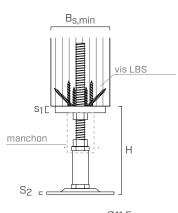
■ PRODUITS COMPLÉMENTAIRES - FIXATIONS

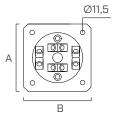

type	description	d	support	page
		[mm]		
XEPOX D	adhésif époxyde	-	2/111	146
AB1 - AB1 A4	ancrage métallique	10	X	494 - 496
SKR	ancrage à visser	10		488
VIN-FIX PRO	ancrage chimique	M10	4	511
EPO-FIX PLUS	ancrage chimique	M10		517
HYB-FIX	ancrage chimique	M10	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-

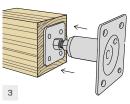

^{*}Les vis HBS PLATE EVO ne sont pas inclues et peuvent être commandées séparément

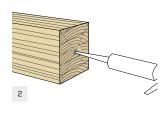

^{*}Les vis HBS PLATE EVO ne sont pas inclues et peuvent être commandées séparément

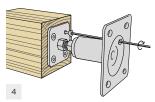

^{*}Les vis LBS et DISC FLAT ne sont pas inclus dans le package et peuvent êtres commandés séparément

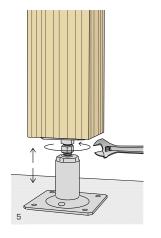

■ GÉOMÉTRIE

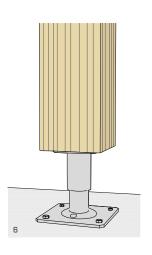



R30




	CODE	$B_{s,min}$	AxBxS ₂	Н	a x b x s ₁
		[mm]	[mm]	[mm]	[mm]
	R1080	80	120 x 120 x 6	140-165	80 x 80 x 6
R10	R10100	100	160 x 160 x 6	170-205	100 x 100 x 6
	R10140	140	200 x 200 x 8	200-250	140 x 140 x 8
	R2080	80	120 x 120 x 6	140-165	80 x 80 x 6
R20	R20100	100	160 x 160 x 6	170-205	100 x 100 x 6
	R20140	140	200 x 200 x 8	200-250	140 x 140 x 8
R30	R3080	120	120 x 120 x 6	150-170	Ø80 x 15
N30	R30120	160	160 x 160 x 6	180-210	Ø120 x 15


MONTAGE



■ VALEURS STATIQUES

RÉSISTANCE À LA COMPRESSION

sollicitation	TYP R		fixation	poteau B _{s,min}	R _{1,c k}	timber	R _{1,c}	k steel
				[mm]	[kN]	Ytimber ⁽¹⁾	[kN]	Ysteel
		R1080		80	71,2		48,3	У м1
↓ F _{1,c}	R10	R10100		100	111,8	. У мт	75,4	
		R10140		140	222,8		108,6	
	R2080 R20100 R20140 R3080 R30120	R2080		80	55,8		48,3	
		R20100			100 90,4		75,4	
B _{s,min}		R20140		140	189,0		108,6	
		R3080		120	-	-	48,3	
			160	-	-	75,4		

RÉSISTANCE À LA TRACTION

sollicitation	TYP R		fixation	poteau B _{s,min}	R _{1,t k}	timber	R _{1,t}	k steel
				[mm]	[kN]	Ytimber (1)	[kN]	Ysteel
		R1080		100	4,2		-	-
↑ F _{1,t}	R10	R10100		120	5,3	У мС	-	-
		R10140		160	5,3		-	-
	R20 R20100 R20140 R3080 R30120	R2080		100	16,1	Y MT Y MC	-	-
		R20100		120	30,2		-	-
B _{s,min}		R20140		160	45,2		-	-
		R3080		120	18,7		24,3	У мо
		R30120		160	62,4		36,4	

NOTES:

 $^{(1)}$ γ_{MT} coefficient partiel du matériau en bois ; γ_{MC} coefficient partiel pour des

PRINCIPES GÉNÉRAUX :

- Les valeurs caractéristiques sont en accord avec ETA-10/0422, à l'exception des valeurs à la traction de R10 et R20 calculées comme suit :
 - pour R10, elles sont calculées en considérant la résistance à l'arrachement des vis HBS PLATE EVO parallèlement au fil selon ETA-11/0030 ;
 - pour R20, elles sont calculées en considérant uniquement la résistance à l'arrachement offerte par la tige filetée fixée avec de l'adhésif époxy (XEPOXD400) et selon DIN 1052:2008.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques

$$R_d = min \quad \begin{cases} \frac{R_{i,k \text{ timber}} \cdot k_{mod}}{\text{Ytimber}} \\ \frac{R_{i,k \text{ steel}}}{\text{Ysteel}} \end{cases}$$

Les coefficients k_{mod} et γ sont établis en fonction de la réglementation en vigueur utilisée pour le calcul.

- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 350 \; \text{kg/m}^3.$
- Le dimensionnement et la vérification des éléments en bois et en béton doivent être effectués séparément.