$d_{\rm K}$

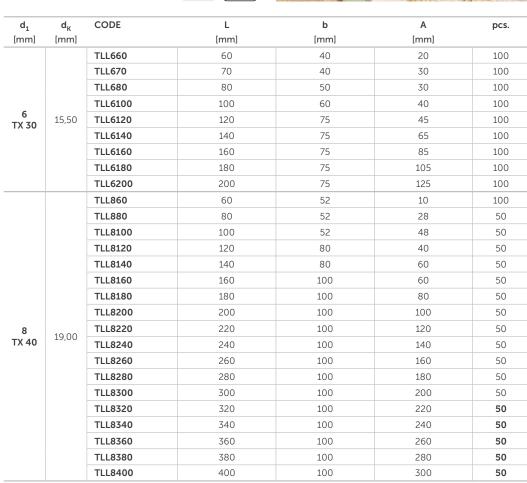
VIS POUR BOIS

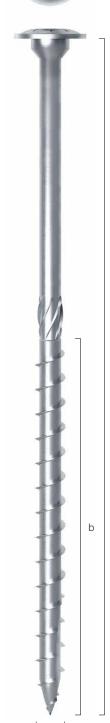
OUTILLAGES

TLL

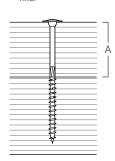
VIS À BOIS BLANCHE À TÊTE LARGE

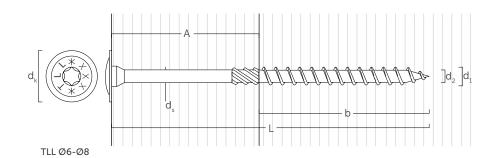
- Vis universelle à tête large pour des applications variées, de la petite structure au bâtiment en bois
- La tête large remplace la rondelle et garantit une résistance élevée à la traction. Idéale en cas de vent ou de variations des dimensions du bois
- Certifiée pour les applications structurelles sollicitées dans toutes les directions par rapport à la fibre, utilisation sur CLT et bois à haute densité tels que LVL

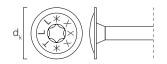




 ${\bf MAT\acute{E}RIAU}$: acier au carbone avec zingage galvanique blanc




A épaisseur maximum à



(0)	
~ 1	
ш	
(13	
\sim	
Œ	
- 7	
_	
_	
_	
\vdash	
_	
_	
$\overline{}$	

d ₁	d _K	CODE	L	b	Α	pcs.
[mm]	[mm]		[mm]	[mm]	[mm]	
10 TX 50	25,00	TLL10160	160	80	80	50
		TLL10200	200	100	100	50
		TLL10240	240	100	140	50
		TLL10280	280	100	180	50
		TLL10320	320	120	200	50
		TLL10360	360	120	240	50
		TLL10400	400	120	280	50

GÉOMÉTRIE ET CARACTÉRISTIQUES MÉCANIQUES

TLL Ø10

diamètre nominal	d ₁	[mm]	6	8	10
diamètre tête	d _K	[mm]	15,50	19,00	25,00
diamètre noyau	d ₂	[mm]	3,95	5,40	6,40
diamètre tige	d _S	[mm]	4,30	5,80	7,00
diamètre pré-perçage ⁽¹⁾	d _V	[mm]	4,0	5,0	6,0
moment plastique caractéristique	$M_{y,k}$	[Nm]	9,5	20,1	35,8
résistance caractéristique à l'arrachement ⁽²⁾	$f_{ax,k}$	[N/mm ²]	11,7	11,7	11,7
résistance caractéristique à la pénétration de la tête ⁽²⁾	f _{head,k}	[N/mm²]	10,5	10,5	10,5
résistance caractéristique à la traction	f _{tens k}	[kN]	11,3	20,1	31,4

⁽¹⁾ Pré-perçage valable pour bois de conifère (softwood).
(2) Valable pour bois de conifère (softwood) - densité maximale 440 kg/m³. Densité associée $\rho_a = 350 \text{ kg/m}^3$.

Pour des applications avec des matériaux différents ou avec une densité élevée, veuillez-vous reporter au document ETA-11/0030.

VALEURS STATIQUES

				CISAILLEMENT	TRACTION		
géométrie				bois-bois	extraction du filet ⁽¹⁾	pénétration tête ⁽²⁾	
		A A					
d_1	L	b	Α	$R_{V,k}$	$R_{ax,k}$	R _{head,k}	
[mm]	[mm]	[mm]	[mm]	[kN]	[kN]	[kN]	
	60	40	20	1,89	3,03	2,72	
	70	40	30	2,15	3,03	2,72	
	80	50	30	2,15	3,79	2,72	
	100	60	40	2,35	4,55	2,72	
6	120	75	45	2,35	5,68	2,72	
	140	75	65	2,35	5,68	2,72	
	160	75	85	2,35	5,68	2,72	
	180	75	105	2,35	5,68	2,72	
	200	75	125	2,35	5,68	2,72	
	60	52	10	1,08	5,25	4,09	
	80	52	28	3,02	5,25	4,09	
	100	52	48	3,71	5,25	4,09	
	120	80	40	3,41	8,08	4,09	
	140	80	60	3,71	8,08	4,09	
	160	100	60	3,71	10,10	4,09	
	180	100	80	3,71	10,10	4,09	
	200	100	100	3,71	10,10	4,09	
8	220	100	120	3,71	10,10	4,09	
0	240	100	140	3,71	10,10	4,09	
	260	100	160	3,71	10,10	4,09	
	280	100	180	3,71	10,10	4,09	
	300	100	200	3,71	10,10	4,09	
	320	100	220	3,71	10,10	4,09	
	340	100	240	3,71	10,10	4,09	
	360	100	260	3,71	10,10	4,09	
	380	100	280	3,71	10,10	4,09	
	400	100	300	3,71	10,10	4,09	
	160	80	80	5,64	10,10	7,08	
	200	100	100	5,64	12,63	7,08	
	240	100	140	5,64	12,63	7,08	
10	280	100	180	5,64	12,63	7,08	
	320	120	200	5,64	15,15	7,08	
	360	120	240	5,64	15,15	7,08	
	400	120	280	5,64	15,15	7,08	

NOTES

- (1) La résistance axiale à l'extraction du filetage a été évaluée en considérant un angle de 90° entre les fibres et le connecteur et pour une longueur d'enfoncement égale à b.
- (2) La résistance axiale de pénétration de la tête a été calculée sur la base d'un élément en bois.

PRINCIPES GÉNÉRAUX

- Les valeurs caractéristiques sont celles de la norme EN 1995:2014 conformément à ETA-11/0030.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

- Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul. Pour les valeurs de résistance mécanique et pour la géométrie des vis, il a été fait référence à ce qui est reporté dans ETA-11/0030. Pour le calcul, la masse volumique des éléments en bois a été estimée à ρ_k = 385 kg/m³.
- Les valeurs ont été calculées en considérant que la partie filetée est complètement insérée dans l'élément en bois.
 Le dimensionnement et la vérification des éléments en bois seront effectués séparément.
- Les résistances caractéristiques au cisaillement sont évaluées pour des vis insérées sans pré-perçage.