MET

TIGES FILETÉES, ÉCROUS ET RONDELLES

- Produit à filetage métrique pour réaliser des connexions et des assemblages
- Disponibles en acier au carbone et en acier inoxydable austénitique A2 pour des applications extérieures (SC3) jusqu'à 1 km de la mer et sur des bois de classe T4.

MGS 1000 - 4.8

TIGE FILETÉE

CODE	tige	L	pcs.
		[mm]	
MGS10008	M8	1000	10
MGS100010	M10	1000	10
MGS100012	M12	1000	10
MGS100014	M14	1000	10
MGS100016	M16	1000	10
MGS100018	M18	1000	10
MGS100020	M20	1000	10
MGS100022	M22	1000	10
MGS100024	M24	1000	10
MGS100027	M27	1000	10
MGS100030	M30	1000	10

Classe acier 4.8 - électrozingué DIN 975

MGS 1000 - 8.8

TIGE FILETÉE

CODE	tige	L	pcs.
		[mm]	
MGS10888	M8	1000	1
MGS11088	M10	1000	1
MGS11288	M12	1000	1
MGS11488	M14	1000	1
MGS11688	M16	1000	1
MGS11888	M18	1000	1
MGS12088	M20	1000	1
MGS12488	M24	1000	1
MGS12788	M27	1000	1

Classe acier 8.8 - électrozingué DIN 975

MGS 2200 - 4.8

TIGE FILETÉE

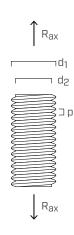
CODE	tige	L	pcs.
		[mm]	
MGS220012	M12	2200	1
MGS220016	M16	2200	1
MGS220020	M20	2200	1

Classe acier 4.8 - électrozingué DIN 975

MGS AI 975

TIGE FILETÉE

CODE	tige	L	pcs.
		[mm]	
AI9758	M8	1000	1
AI97510	M10	1000	1
AI97512	M12	1000	1
AI97516	M16	1000	1
AI97520	M20	1000	1



VALEURS STATIQUES TIGES MGS

RÉSISTANCE À LA TRACTION

						classe acier	
					4,8	8,8	A2
tige	d_1	d_2	р	A_{resist}	R _{ax,k}	$R_{ax,k}$	$R_{ax,k}$
	[mm]	[mm]	[mm]	[mm ²]	[kN]	[kN]	[kN]
M8	8	6,47	1,25	36,6	13,2	26,4	23,1
M10	10	8,16	1,50	58,0	20,9	41,8	36,5
M12	12	9,85	1,75	84,3	30,3	60,7	53,1
M14	14	11,55	2,00	115,4	41,6	83,1	-
M16	16	13,55	2,00	156,7	56,4	112,8	98,7
M18	18	14,93	2,50	192,5	69,3	138,6	-
M20	20	16,93	2,50	244,8	88,1	176,3	154,2
M22	22	18,93	2,50	303,4	109,2	218,4	-
M24	24	20,32	3,00	352,5	126,9	253,8	-
M27	27	23,32	3,00	459,4	165,4	330,8	-
M30	30	25,71	3,50	560,6	201,8	403,6	-

Les valeurs caractéristiques sont selon la norme EN 1993.

Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes : $R_{ax,d} = R_{ax,k} / \gamma_{M2}$.

Le coefficient γ_{M2} est établi en fonction de la réglementation en vigueur utilisée pour le calcul.


ULS 9021

RONDELLE

CODE	tige	d _{INT}	d_{EXT}	s	pcs.
		[mm]	[mm]	[mm]	
ULS8242	M8	8,4	24,0	2,0	200
ULS10302	M10	10,5	30,0	2,5	200
ULS13373	M12	13,0	37,0	3,0	100
ULS15443	M14	15,0	44,0	3,0	100
ULS17503	M16	17,0	50,0	3,0	100
ULS20564	M18	20,0	56,0	4,0	50
ULS22604	M20	22,0	60,0	4,0	50

 $^{^{(\}star)}$ La norme ISO 7093 se distingue de la norme DIN 9021 par la dureté superficielle.

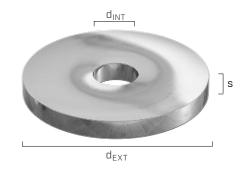
Acier HV 100 - électrozingué DIN 9021 (ISO 7093*)

ULS 440

RONDELLE

CODE	tige	d_{INT}	d_{EXT}	S	pcs.
		[mm]	[mm]	[mm]	
ULS11343	M10	11,0	34,0	3,0	200
ULS13444	M12	14,0	44,0	4,0	200
ULS17565	M16	17,0	56,0	5,0	50
ULS22726	M20	22,0	72,0	6,0	50
ULS24806	M22	24,0	80,0	6,0	25

Acier HV 100 - électrozingué DIN 440 R



ULS1052

RONDELLE

CODE	tige	d _{INT}	d_{EXT}	s	pcs.
		[mm]	[mm]	[mm]	
ULS14586	M12	14,0	58,0	6,0	50
ULS18686	M16	18,0	68,0	6,0	50
ULS22808	M20	22,0	80,0	8,0	25
ULS25928	M22	25,0	92,0	8,0	20
ULS271058	M24	27,0	105,0	8,0	20

Acier HV 100- 250 - électrozingué DIN 1052

ULS 125

RONDELLE

CODE	tige	d_{INT}	d_{EXT}	s	pcs.
		[mm]	[mm]	[mm]	
ULS81616	M8	8,4	16,0	1,6	1000
ULS10202	M10	10,5	20,0	2,0	500
ULS13242	M12	13,0	24,0	2,5	500
ULS17303	M16	17,0	30,0	3,0	250
ULS21373	M20	21,0	37,0	3,0	250
ULS25444	M24	25,0	44,0	4,0	200
ULS28504	M27	28,0	50,0	4,0	100
ULS31564	M30	31,0	56,0	4,0	20

Acier HV 100 - électrozingué DIN 125 A (ISO 7089)

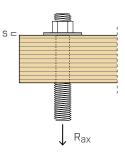
ULS AI 9021

RONDELLE

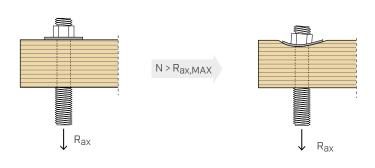
CODE	tige	d_{INT}	d_{EXT}	S	pcs.
		[mm]	[mm]	[mm]	
AI90218	M8	8,4	24,0	2,0	500
AI902110	M10	10,5	30,0	2,5	500
AI902112	M12	13,0	37,0	3,0	200
Al902116	M16	17,0	50,0	3,0	100
AI902120	M20	22,0	60,0	4,0	50

^(*) La norme ISO 7093 se distingue de la norme DIN 9021 par la dureté superficielle.

Acier inoxydable A2 | AISI304 DIN 9021 (ISO 7093-1*)



VALEURS STATIQUES RONDELLES ULS


RÉSISTANCE À LA PÉNÉTRATION DANS LE BOIS

tige	norme	d _{INT}	d_{EXT}	s	R _{ax,k}
		[mm]	[mm]	[mm]	[kN]
	ULS 9021	10,5	30,0	2,5	4,65
M10	ULS 440	11,0	34,0	3,0	6,10
MIO	ULS 1052	-	-	-	-
	ULS 125	10,5	20,0	2,0	1,71
	ULS 9021	13,0	37,0	3,0	7,07
M12	ULS 440	14,0	44,0	4,0	10,25
MIL	ULS 1052	14,0	58,0	6,0	18,66
	ULS 125	13,0	24,0	2,5	2,40
	ULS 9021	17,0	50,0	3,0	13,02
M16	ULS 440	17,0	56,0	5,0	16,77
M16	ULS 1052	18,0	68,0	6,0	25,33
	ULS 125	17,0	30,0	3,0	3,60
	ULS 9021	22,0	60,0	4,0	18,35
M20	ULS 440	22,0	72,0	6,0	27,69
MZO	ULS 1052	22,0	80,0	8,0	34,85
	ULS 125	21,0	37,0	3,0	5,47
	ULS 9021	-	-	-	-
M24	ULS 440	-	-	-	-
14124	ULS 1052	27,0	105,0	8,0	60,65
	ULS 125	25,0	44,0	4,0	7,72

RISQUE: PÉNÉTRATION DE LA RONDELLE DANS LE BOIS

PRINCIPES GÉNÉRAUX :

- Les valeurs caractéristiques sont selon EN 1995-1-1.
- Les valeurs de calcul sont obtenues à partir des valeurs caractéristiques suivantes :

$$R_{ax,d} = \frac{R_{ax,k} \cdot K_{mod}}{\gamma_M}$$

Les coefficients γ_M et k_{mod} sont établis en fonction de la réglementation en vigueur utilisée pour le calcul.

- Pour le calcul, la masse volumique des éléments en bois a été estimée à $\rho_k = 385 \ kg/m^3.$
- La résistance à la pénétration d'une rondelle est proportionnelle à sa surface de contact avec l'élément en bois.

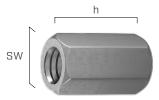
MUT 934

ÉCROU HEXAGONAL

CODE	tige	SW	h	pcs.
		[mm]	[mm]	
MUT9348	M8	13	6,5	400
MUT93410	M10	17	8,0	500
MUT93412	M12	19	10,0	500
MUT93414	M14	22	11,0	200
MUT93416	M16	24	13,0	200
MUT93418	M18	27	15,0	100
MUT93420	M20	30	16,0	100
MUT93422	M22	32	18,0	50
MUT93424	M24	36	19,0	50
MUT93427	M27	41	22,0	25
MUT93430	M30	46	24,0	25

 $^{^{(*)}}$ La norme ISO 4032 se distingue de la norme DIN 934 par le paramètre h et, pour les diamètres M10, M12, M14 et M22, également par le paramètre SW.

Classe acier 8 - électrozingué DIN 934 (ISO 4032*)



MUT6334

ÉCROU D'ASSEMBLAGE

CODE	tige	SW	h	pcs.
		[mm]	[mm]	
MUT633410	M10	17	30,0	10
MUT633412	M12	19	36,0	10
MUT633416	M16	24	48,0	25
MUT633420	M20	30	60,0	10

Classe acier 8 - électrozingué DIN 6334

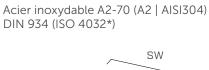
MUT 1587

ÉCROU BORGNE

CODE	tige	SW	h	pcs.
		[mm]	[mm]	
MUT15878S	M8	13	15,0	200
MUT158710S	M10	17	18,0	50
MUT158712S	M12	19	22,0	50
MUT158714S	M14	22	25,0	50
MUT158716S	M16	24	28,0	50
MUT158718S	M18	27	32,0	50
MUT158720S	M20	30	34,0	25
MUT158722S	M22	32	39,0	25
MUT158724S	M24	36	42,0	25

Écrou borgne tourné d'une seule pièce.

Classe acier 6 - électrozingué DIN 1587


MUTAI934

ÉCROU HEXAGONAL

CODE	tige	SW	h	pcs.
		[mm]	[mm]	
AI9348	M8	13	6,5	500
AI93410	M10	17	8,0	200
AI93412	M12	19	10,0	200
AI93416	M16	24	13,0	100
AI93420	M20	30	16,0	50

^(*) La norme ISO 4032 se distingue de la norme DIN 934 par le paramètre h et, pour les diamètres M10 et M12, également par le paramètre SW.

MUTAI985

ÉCROU FREIN

CODE	tige	SW	h	pcs.
		[mm]	[mm]	
AI9858	M8	13	8,0	500
AI98510	M10	17	10,0	200
AI98512	M12	19	12,0	200
AI98516	M16	24	16,0	100

 $^{^{(*)}}$ La norme ISO 10511 se distingue de la norme DIN 995 par le paramètre h et, pour les diamètres M10 et M12, également par le paramètre SW.

Acier inoxydable A2-70 (A2 | AISI304) DIN 985 (ISO 10511*)

A2AISI 304

MUTAI1587

ÉCROU BORGNE

CODE	tige	SW	h	pcs.
		[mm]	[mm]	
AI158710	M10	17	18,0	100
AI158712	M12	19	22,0	100
AI158716	M16	24	28,0	50
AI158720	M20	30	34,0	25

Écrou borgne tourné d'une seule pièce.

Acier inoxydable A2 | AISI304 DIN 1587

